with sodium acetate (-15 °C for 30 min and room temperature overnight), the Z isomer (IVa) was obtained in 69% overall yield (stereoselectivity 88%).¹⁴ Similar reaction of 5-triethylsilyl-4-decanone (Ic) with methyllithium gave IIIa in 76% vield (stereoselectivity 91%) by treatment with potassium tert-butoxide and IVa in 57% overall yield (stereoselectivity 90%) by treatment with glacial acetic acid saturated with sodium acetate.15

Further information about the stereoselectivity of this olefin synthesis was obtained from the reaction of 3-trimethylsilyl-2-octanone (Ib) with propyllithium. Treatment of the reaction mixture with potassium tert-butoxide gave IVa in 25% yield (stereoselectivity 96%) via IIb.¹⁶

When methylmagnesium bromide, in place of methyllithium, was treated with β -ketosilane Ia, IVa was obtained in 22% (stereoselectivity 77%) after acidic workup (glacial acid saturated with sodium acetate). Reaction of Ia with phenyllithium gave 4-phenyl-4-decene (52% overall yield, 39/61 E/Z) after treatment of the reaction mixture with concentrated sulfuric acid.17

These data show that β -hydroxysilanes are produced from β -ketosilanes and alkyllithium reagents in high stereoselectivity. The potassium salt of the alcohol produces a trisubstituted ethylene by syn-elimination of trimethylsilyl and hydroxy groups whereas treatment with acid in the presence of nucleophile induces anti-elimination of these two groups.1-3,6

Preparation of 4-methyl-4(E)-decene (IIIa) and the Z isomer (IVa) are representative. A stirred solution of 5-trimethylsilyl-4-decanone (Ia, 0.23 g, 1 mmol) in 5 ml of THF was treated with methyllithium (3 mmol, 3.5 ml of 0.85 M ethereal solution) at -78 °C and the reaction mixture was stirred at room temperature overnight. Addition of 1.0 g (9 mmol) of potassium tert-butoxide and refluxing of the reaction mixture for 1 h gave IIIa (74% overall yield, 91/9 E/Z): NMR (CCl₄) δ 0.6–1.04 (6 H, m), 1.04–1.5 (8 H, m), 1.55 (3 H, br s), 1.70–2.20 (4 H, m), 5.05 (1 H, br t, J = 7 Hz). When the reaction mixture from Ia and methyllithium (-78 °C for 15 min, then room temperature for 1 h) was treated with 10 ml of glacial acetic acid saturated with sodium acetate under stirring at -15 °C for 30 min and at room temperature overnight, workup gave IVa (69%, 12/88 E/Z): NMR (CCl₄) δ 0.88 (6 H, t, J = 6 Hz), 1.03–1.57 (8 H, m), 1.63 (3 H, br s), 1.70–2.17 (4 H, m), 5.00 (1 H, t, J = 7 Hz); MS m/e (rel intensity, %), 154 (M⁺, 11), 111 (13), 97 (22), 84 (16), 69 (52), 55 (100).

Acknowledgment. The authors wish to thank to the Ministry of Education, Japan, for Grant-in-Aid 911506.

References and Notes

- P. F. Hudrlik and D. Peterson, *Tetrahedron Lett.*, 1133 (1974).
 P. F. Hudrlik and D. Peterson, *J. Am. Chem. Soc.*, 97, 1464 (1975).
 P. F. Hudrlik, D. Petersom, and R. J. Rona, *J. Org. Chem.*, 40, 2263
- (1975). (4) K. Utimoto, M. Kitai, and H. Nozaki, Tetrahedron Lett., 2825 (1975).
- K. Uchida, K. Utimoto, and H. Nozaki, J. Org. Chem., 41, 2215 (1976)
 P. B. Dervan and M. A. Shippey, J. Am. Chem. Soc., 98, 1265 (1976).

- T. H. Chan, W. Mychajlowskij, B. S. Ong, and D. N. Harpp, J. Organometal. Chem., 107, CI (1976).
- (8) Stereochemistry of olefin-forming reaction from β -hydroxysilanes was studied (ref 1-3).
- J.-Disubstituted ethylenes were prepared by analogous procedures: (a)
 P. F. Hudrlik and D. Peterson, *Tetrahedron Lett.*, 1785 (1972); (b) R. A. Ruden and B. L. Gaffney, *Synth. Commun.*, 5, 15 (1975). (9)
- (10) Prepared from trimethylvinylsilane, butyllithium, and butyraldehyde analogously to the reported procedure (ref 2) for the preparation of β -ketosilanes. This ketosilane was also prepared from trimethylvinylsilane, butyl lithium, and butyryl chloride in 45% overall yield: bp 110-120 °C (23 mm).
- (11) Compound IIa was not isolated. Stereochemistry of IIa as well as its corresponding alcohol could not be determined but estimated from the stereochemistry of olefins prepared by syn- and anti-elimination.
- The structure of Illa and IVa are based on the NMR. The chemical shift of (12)7-methyl signal in 3-propyl-7-methyl-2(Z),6(E)-decadien-1-ol is recorded to be at δ 1.57 ppm, whereas that of the $\delta(Z)$ isomer is recorded to be at 1.66 (ref 13). The observed chemical shift of vinylic methyl of Illa appeared at δ 1.55 ppm and that of the Z isomer (IVa) at 1.63.
- (a) S. B. Bowlus and J. A. Katzenellenbogen, J. Org. Chem., 38, 2733 (1973); Tetrahedron Lett., 1277 (1973); (b) M. P. Cooke, Jr., Tetrahedron (13)ett., 1281 (1973).
- This mixture did not contain other isomers. We could not detect (Z)- and (E)-4-methyl-3-decene from the product mixture. (14)
- (15) Further attempts for preparation of olefins: treatment with thioglycolic acid, 61% yield, 46/54 E/Z; BF₃-OEt₂, 82, 37/63. Treatment of the reaction mixture with ammonium chloride gave β -hydroxysilane (lla', Li = H) which gave IVa: treatment with AcOH saturated with ACONa, 46% yield, 10:90 E/Z; AcOH-KF, 72, 12/88; H₂SO₄-KF, 84, 18/82; H₂SO₄, 69, 24/76. (16) Propyllithium may abstract proton from methyl ketone in lb. This side re-
- action may lower the overall yield of IVa
- Treatment of the reaction mixture with potassium tert-butoxide or glacial acetic acid saturated with sodium acetate did not give any olefin. Sulfuric (17)acid produces a benzyl-type cation which gives 4-phenyl-4-decene by the elimination of trimethylsilyl group.

Kiitiro Utimoto,* Michio Obayashi, Hitosi Nozaki Department of Industrial Chemistry, Kyoto University Yoshida, Kyoto 606, Japan Received March 25, 1976

Stereoselective Synthesis of Vinylsilanes from Alkynylsilanes by Reductive Alkylation via Hydroboration and Carbodemetalation

Summary: Hydroboration of 1-trimethylsilyl-1-alkyne with dicyclohexylborane gave 1-trimethylsilylvinylborane regioand stereoselectively whose successive treatment with methyllithium, cuprous iodide, and alkyl halides afforded 1,2-dialkylvinylsilane with strict geometry.

Sir: Organosilicon compounds have attracted much attention as versatile reagents for organic synthesis,¹ for example, vinylsilanes have been shown to be useful precursor for ketones, vinyl halides, and olefins of predictable stereochemistry.^{2,3} We wish to describe here a novel stereoselective and generally applicable procedure for the reductive 1,2-dialkylvinylsilanes with fixed configuration, which is based on regioselective hydroboration of 1-alkynylsilane to vinylborane and the following stereoselective transmetalation and carbodemetalation.4

Hydroboration of 1-trimethylsilyl-1-octyne (I, R = n- C_6H_{13}) with excess dicyclohexylborane gave vinylborane II $(R = n - C_6 H_{13})$ regioselectively.^{5,6} Excess borane was quenched with 1-butene and the resulting mixture was treated with

Table I. Stereoselective Synthesis of 1,2-Dialkylvinylsilanes (IV)

^a Method B means carbodemetallation via borate and method Cu indicates carbodemetallation via vinylcopper. ^b Isolated yield after column chromatography unless otherwise stated. ^c Analysis by GLC (3×3 mm glass column packed with 20% silicon HVSG or 20% PEG 20M on Chromosorb W-AW). ^d Determined by GLC. ^e Isolated by column chromatography followed by distillation. ^f Prepared according to the modified Julia method: J. P. McCormick and D. L. Barton, J. Chem. Soc., Chem. Commun., 303 (1975). & Trimethyl phosphite was used in the place of triethyl phosphite. h Determined by NMR. ⁱ After isolation of the protected alcohol by column chromatography (silica gel or basic alumina), the alcohol was obtained by methanolysis (5 mM TsOH in MeOH, room temperature, 1 h) followed by distillation (Kugelrohr). *i* After removal of the protecting group, the alcohol was purified by column chromatography (silica gel). k 2-Methyl-2-(3-iodopropyl)-1,3-dioxolane.

methyllithium (equimolar to used borane and an additional 1 mol) and cuprous iodide affording α -silylated vinylcopper.⁷ Treatment with a wide variety of alkyl halides afforded stereoselective 1,2-dialkylvinylsilanes IV in excellent yield. The reactivity toward tosylate and homoallyl halide indicated that the above-described α -silvlated vinylcopper was more reactive than the simple vinylcopper.8 Table I shows the chemical yield and stereoselectivity of the vinylsilanes.

Preparation of 3-trimethylsilyl-3(Z)-decene is representative. To a stirred suspension of dicyclohexylborane in THF, prepared from $6 \text{ mmol} (5.6 \text{ ml of } 1.08 \text{ M solution of BH}_3 \text{ in THF}) \text{ of borane and } 0.98$ g (12 mmol) of cyclohexene in 4.0 ml of THF at 0 °C, was added 0.55 g (3.0 mmol) of 1-trimethylsilyl-1-octyne under argon. After stirring at room temperature for 5 h, the remaining dicyclohexylborane was quenched with 1-butene at 0 °C and transformed into dicyclohexylbutylborane. The reaction mixture was first treated with 9.0 mmol of methyllithium (6.6 ml of 1.36 M ethereal solution), stirred at room temperature for 20 min, and finally treated with cuprous iodide (0.57 g, 3.0 mmol) at -30 °C for 5 min. The resulting dark brown mixture was added with triethyl phosphite (0.60 g, 3.6 mmol) and hexamethylphosphoric triamide (3 ml) then with ethyl iodide (0.70 g, 4.5 mmol) at -30 °C. The reaction mixture was allowed to warm to room temperature overnight and treated with 4 ml of 3 N NaOH and 8 ml of 30% H₂O₂ at 0 °C. After stirring at room temperature for 1 h, the reaction mixture was extracted with ether, washed, dried, and chromatographed on silica gel (hexane), affording 0.56 g (88%) of IV (R $= n \cdot \tilde{C}_6 H_{13}; R' = C_2 H_5).$

Analogous to the previously reported synthesis of vinylsilane from alanates,⁴ intermediary borates, prepared from 1trimethylsilyl-1-alkyne, dicyclohexylborane, and methyllithium, could react with methyl iodide and allyl halides in excellent yield. 9,10

The above-described procedures, coupled with the facile exchange of trimethylsilyl into hydrogen,^{2b,3} provide highly stereoselective synthesis of olefins from 1-alkyne and are novel additions to the synthetic reactions with organoboron compounds.

Acknowledgment. The authors wish to thank the Ministry of Education, Japan, for Grant-in-Aid 911506.

References and Notes

- (1) (a) S. S. Washborn, J. Organometal. Chem., 83, 155 (1974); (b) I. Fleming,
- (a) K. E. Koenig and W. P. Weber, J. Am. Chem. Soc., 95, 3416 (1973);
 (b) K. Utimoto, M. Kitai, and H. Nozaki, *Tetrahedron Lett.*, 2825 (1975), and (2) (d) I. Fleming and A. Pearce, J. Chem. Soc., Chem. Commun., 633 (1974);
 (d) I. Fleming and A. Pearce, J. Chem. Soc., Chem. Commun., 633 (1975); (e) G. Stork, M. E. Jung, E. Colvin, Y. Noel, J. Am. Chem. Soc., 96, 3684 1974).
- VinyIsilanes were prepared from 1-trimethyIsilyIvinyIlithium. Recent report (3)
- (4)J. Org. Chem., 41, 2214 (1976); (b) K. Uchida, K. Utimoto, and H. Nozaki, Ibid., 41, 2215 (1976).
- Hydroboration and successive treatment with acetic acid was reported to produce (Z)-vinylsilane from 1-trimethylsilyl-1-alkyne (ref 2c), but reg-ioselectivity of hydroboration has not been described.
- NMR of the crude product showed a single olefinic proton (CCl₄, Me₄Si as internal standard, δ 5.48 ppm, t, J = 7 Hz). This observation as well as the yield of carbodemetalation product suggested that 1-trimethylsilylvinylborane II is the sole product.
- The formation of α -silvlated vinylcopper upon treatment with cuprous iodide (7)was suggested by the characteristic brown color of the reaction mixture
- J. F. Normant, G. Cahiez, C. Chuit, and J. Villieras, J. Organometal. Chem., (8) 77, 269 (1974), and references cited therein. Under similar reaction conditions, ethyl iodide gave the corresponding
- ethylated product in 10% yield.
- (10) This would be the first example of intermolecular carbodemetalation of the α,β-unsaturated boron ate complex, whose reaction with electrophiles usually gives rearranged product (ref 11). Similar intermolecular reaction was reported by E. Negishi's group for the case of phenylborates (ref 12).
- (a) G. Zweifel, H. Arzoumanian, and C. C. Whitney, J. Am. Chem. Soc., 89, 3652 (1967); (b) G. Zweifel, R. P. Fisher, J. T. Snow, and C. C. Whitney, *ibid.*, 93, 6309 (1971); 94, 6560 (1972); (c) K. Utimoto, K. Uchida, and H. Nozaki, *Tetrahedron Lett.*, 4527 (1973); *Chem. Lett.*, 1493 (1974). (11)
- (12) E. Negishi, A. Abramovitch, and R. E. Merili, J. Chem. Soc., Chem. Commun., 138 (1975)

Keiichiro Uchida, Kiitiro Utimoto,* Hitosi Nozaki Department of Industrial Chemistry, Kyoto University Yoshida, Kyoto 606, Japan Received March 25, 1976